30 research outputs found

    Keeping track of worm trackers

    Get PDF
    C. elegans is used extensively as a model system in the neurosciences due to its well defined nervous system. However, the seeming simplicity of this nervous system in anatomical structure and neuronal connectivity, at least compared to higher animals, underlies a rich diversity of behaviors. The usefulness of the worm in genome-wide mutagenesis or RNAi screens, where thousands of strains are assessed for phenotype, emphasizes the need for computational methods for automated parameterization of generated behaviors. In addition, behaviors can be modulated upon external cues like temperature, O2 and CO2 concentrations, mechanosensory and chemosensory inputs. Different machine vision tools have been developed to aid researchers in their efforts to inventory and characterize defined behavioral “outputs”. Here we aim at providing an overview of different worm-tracking packages or video analysis tools designed to quantify different aspects of locomotion such as the occurrence of directional changes (turns, omega bends), curvature of the sinusoidal shape (amplitude, body bend angles) and velocity (speed, backward or forward movement)

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Multi-messenger Observations of a Binary Neutron Star Merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∼ 1.7 {{s}} with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of {40}-8+8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 {M}ȯ . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∼ 40 {{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∼10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∼ 9 and ∼ 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.</p

    Neuropeptidergic control of synaptic vesicle filling and behavior in the nematode "Caenorhabditis elegans"

    No full text
    This thesis reports on the results obtained by expression photoactivatable adenylyl cyclase from Beggiatoa spp. (bPAC) in cholinergic neurons from Caenorhabditis elegans (C. elegans) and the characterization of the role of a single neuron, RIS, during locomotion in the adult animal. Pharmacological activation of adenylyl cyclases through Forskolin is known to induce increased neuronal output in diverse model organisms through a protein kinase A (PKA) dependent mechanism. Nevertheless, pharmacological assays are not spatially restricted, do not allow for precise and acute activation nor to cessation of the signal. Thus, an optogenetic approach for was selected trough the expression of photoactivatable adenylyl cyclase from Beggiatoa spp. (bPAC) in cholinergic neurons of Caenorhabditis elegans (C. elegans). This model organism was chosen due to its transparency, ease of maintenance, fast generation cycles as well as for being an eutelic animal. Further, its genome has been fully sequenced and the connectome of the neuronal network is known, thus allowing for precise analysis of neuronal function. Furthermore, the molecular mechanisms governing neuronal functions are well conserved up to primates. Mainly two optogenetical tools were applied, bPAC and the light gated cation channel channelrhodopsin 2 (ChR2). Behavioral assays of bPAC photostimulation in cholinergic neurons recapitulated previous work performed with the photoactivatable adenylyl cyclase from Euglena gracilis (EuPACa), in which swimming frequency and speed on solid substrate were increased. Electrophysiological recordings of body wall muscle (BWM) cells by Dr. Jana F. Liewald showed that bPAC photoactivation led to an increase in miniature postsynaptic current (mPSC) rate and, in contrast to ChR2 invoked depolarization, also amplitude. Analysis of mutants deficient in neuropeptidergic signaling (UNC- 31) via electrophysiology performed by Dr. Jana F. Liewald showed that the increase in mPSC amplitude due to bPAC photoactivation requires neuropeptide release. This was confirmed by co-expression of bPAC with the neuropeptide marker NLP-21::Venus and subsequent fluorescence analysis of release, exploiting the fact that released neuropeptides are ultimately degraded by scavenger cells (coelomocytes). These were enriched with NLP-21::Venus after bPAC photostimulation, but no fluorescence could be observed in the UNC-31 mutants. Additional analysis of the electrophysiological data performed by myself showed no modulation of mPSC kinetics dues to neuropeptidergic release induced by bPAC. Hence, neuropeptide release and action sites were in the cholinergic neurons, the latter including cholinergic motoneurons. Dr. Szi-chieh Yu provided electron microscopy images of high pressure frozen, bPAC or ChR2 expressing animals. These were tagged by myself for automatic analysis of ultrastructural properties of the cholinergic presynapse, also during photoactivation of both optogenetic tools. Photoactivation of both induced a reduction of synaptic vesicles, with ChR2 showing a more severe effect. In contrast to ChR2, though, bPAC also reduced the amount of dense core vesicles (DCV), the neuropeptide transporters. Additionally, long bPAC photoactivation as well as ChR2 photoactivation led to the appearance of large vesicles (LV), presumably in response to the increased SV fusion rate. bPAC photostimulation also induced an increase in SV size, not observed after ChR2 photostimulation. In UNC-31 mutants, bPAC photostimulation could not lead to the SV size increase, a further argument for the presynaptic effect of the released neuropeptide. Additional analysis of electrophysiology paired with pharmacology, performed by Dr. Jana F. Liewald, showed that mPSC amplitude increase requires the function of the vesicular acetylcholine transporter. A further effect observed in the ultrastructure of bPAC photostimulated cholinergic presynapses was a shift in the distribution of SV regarding the dense projection. An analysis of cAMP pathway mutants showed that synapsin is required for bPAC induced behavior effects. Synapsin is known to mediate SV tethering to the cytoskeleton. Here, I show evidence for a new role of synapsin in controlling the availability of DCVs for fusion and thus, in neuropeptidergic signaling. In the second part of my thesis I characterized the function of the GABAergic interneuron RIS in the neuronal network of C. elegans. RIS was shown to induce lethargus, a sleep-like state, during all larval molts, but its function in the adult animal was not yet described. Specific RIS expression of ChR2 achieved by a recombinase based system allowed to acutely depolarize the neuron during locomotion, which led to an acute behavioral stop. Diverse signal transduction pathway mutants were analyzed showing that the phenotype was induced by neuropeptidergic signaling. Through mutagenesis followed by whole genome sequencing data analysis as well as analysis of RIS specific RNA sequencing data further narrowed the signal transduction pathway to mediate the locomotion stop behavior. Since the neuropeptide and, to some extent, the neuron are conserved across nematodes, an argument is outlined in favor of the conservation of this sleep-like state. In addition, since ChR2 could induce neuropeptidergic signaling from RIS, secretion of vesicles is regulated by variable pathways depending on the neuronal identity. Nevertheless, expression of bPAC in RIS allowed to optogenetically increase the probability of short stops, as observed by expression of a calcium sensor (GCaMP) in RIS and analysis of its intrinsic activity in the adult animal

    Arrhythmogenic effects of mutated L-type Ca 2+-channels on an optogenetically paced muscular pump in Caenorhabditis elegans

    No full text
    Cardiac arrhythmias are often associated with mutations in ion channels or other proteins. To enable drug development for distinct arrhythmias, model systems are required that allow implementing patient-specific mutations. We assessed a muscular pump in Caenorhabditis elegans. The pharynx utilizes homologues of most of the ion channels, pumps and transporters defining human cardiac physiology. To yield precise rhythmicity, we optically paced the pharynx using channelrhodopsin-2. We assessed pharynx pumping by extracellular recordings (electropharyngeograms--EPGs), and by a novel video-microscopy based method we developed, which allows analyzing multiple animals simultaneously. Mutations in the L-type VGCC (voltage-gated Ca(2+)-channel) EGL-19 caused prolonged pump duration, as found for analogous mutations in the Cav1.2 channel, associated with long QT syndrome. egl-19 mutations affected ability to pump at high frequency and induced arrhythmicity. The pharyngeal neurons did not influence these effects. We tested whether drugs could ameliorate arrhythmia in the optogenetically paced pharynx. The dihydropyridine analog Nemadipine A prolonged pump duration in wild type, and reduced or prolonged pump duration of distinct egl-19 alleles, thus indicating allele-specific effects. In sum, our model may allow screening of drug candidates affecting specific VGCCs mutations, and permit to better understand the effects of distinct mutations on a macroscopic level

    Synapsin is required for dense core vesicle capture and cAMP-dependent neuropeptide release

    No full text
    Release of neuropeptides from dense core vesicles (DCVs) is essential for neuromodulation. Compared to the release of small neurotransmitters, much less is known about the mechanisms and proteins contributing to neuropeptide release. By optogenetics, behavioral analysis, electrophysiology, electron microscopy, and live imaging, we show that synapsin SNN-1 is required for cAMP-dependent neuropeptide release in Caenorhabditis elegans hermaphrodite cholinergic motor neurons. In synapsin mutants, behaviors induced by the photoactivated adenylyl cyclase bPAC, which we previously showed to depend on acetylcholine and neuropeptides (Steuer Costa et al., 2017), are altered like in animals with reduced cAMP. Synapsin mutants have slight alterations in synaptic vesicle (SV) distribution, however, a defect in SV mobilization was apparent after channelrhodopsin-based photostimulation. DCVs were largely affected in snn-1 mutants: DCVs were ∼30% reduced in synaptic terminals, and not released following bPAC stimulation. Imaging axonal DCV trafficking, also in genome-engineered mutants in the serine-9 protein kinase A phosphorylation site, showed that synapsin captures DCVs at synapses, making them available for release. SNN-1 co-localized with immobile, captured DCVs. In synapsin deletion mutants, DCVs were more mobile and less likely to be caught at release sites, and in non-phosphorylatable SNN-1B(S9A) mutants, DCVs traffic less and accumulate, likely by enhanced SNN-1 dependent tethering. Our work establishes synapsin as a key mediator of neuropeptide release

    **Caenorhabditis elegans** nicotinic acetylcholine receptors are required for nociception

    No full text
    Polymodal nociceptors sense and integrate information on injurious mechanical, thermal, and chemical stimuli. Chemical signals either activate nociceptors or modulate their responses to other stimuli. One chemical known to activate or modulate responses of nociceptors is acetylcholine (ACh). Across evolution nociceptors express subunits of the nicotinic acetylcholine receptor (nAChR) family, a family of ACh-gated ion channels. The roles of ACh and nAChRs in nociceptor function are, however, poorly understood. Caenorhabditis elegans polymodal nociceptors, PVD, express nAChR subunits on their sensory arbor. Here we show that mutations reducing ACh synthesis and mutations in nAChR subunits lead to defects in PVD function and morphology. A likely cause for these defects is a reduction in cytosolic calcium measured in ACh and nAChR mutants. Indeed, overexpression of a calcium pump in PVD mimics defects in PVD function and morphology found in nAChR mutants. Our results demonstrate, for the first time, a central role for nAChRs and ACh in nociceptor function and suggest that calcium permeating via nAChRs facilitates activity of several signaling pathways within this neuron

    Functionally asymmetric motor neurons contribute to coordinating locomotion of Caenorhabditis elegans

    No full text
    Locomotion circuits developed in simple animals, and circuit motifs further evolved in higher animals. To understand locomotion circuit motifs, they must be characterized in many models. The nematode Caenorhabditis elegans possesses one of the best-studied circuits for undulatory movement. Yet, for 1/6th of the cholinergic motor neurons (MNs), the AS MNs, functional information is unavailable. Ventral nerve cord (VNC) MNs coordinate undulations, in small circuits of complementary neurons innervating opposing muscles. AS MNs differ, as they innervate muscles and other MNs asymmetrically, without complementary partners. We characterized AS MNs by optogenetic, behavioral and imaging analyses. They generate asymmetric muscle activation, enabling navigation, and contribute to coordination of dorso-ventral undulation as well as anterio-posterior bending wave propagation. AS MN activity correlated with forward and backward locomotion, and they functionally connect to premotor interneurons (PINs) for both locomotion regimes. Electrical feedback from AS MNs via gap junctions may affect only backward PINs
    corecore